VMINer: Versatile Multi-view Inverse Rendering with Near- and Far-field Light Sources Jiajun Tang 1,3 Ping Tan ^{2,3} Fan Fei ^{1,3} Boxin Shi¹ ² Hong Kong University of Science and Technology ¹ Peking University ## Project page: https://costrice.github.io/vminer Comparison Results ### Motivation #### Make 3D reconstructions relightable - > 3D reconstruction methods usually represent only the radiance, a product of geometry, material, and lighting, making their results unrelightable. - > Inverse rendering further separates material and lighting, making the reconstruction relightable. #### Leverage varied lighting to disambiguate Severe Inherent Ambiguity: dark region in the red circle due to geometry, material, or lighting? Finding: not due to material, or the dark region would sustain Observation: it disappears under another lighting - > We propose to make the most out of whatever lighting conditions (both far- and near-field) are at hand to disentangle lighting from the material, resulting in a versatile framework. - > A higher degree of lighting variation gives better reconstruction results but requires a more burdensome capture process. It is up to you. - > Use flashlights as handy, effective light sources. : untrainable operator ➤ Model each far-field lighting as spherical Gaussians with per-lobe axis, amplitude, and sharpness $|\xi_{ij}, \mu_{ij}, \lambda_{ij}|$: refer to another entry ➤ Model near-field lighting as a point light with position and SH radiation $| \mathbf{p}_i, \mathbf{h}_i |$: input : variable - \triangleright Compute the indirect illumination $L_{ind*_i}(\mathbf{x}, \boldsymbol{\omega})$ and the secondary visibility of the direct illumination $L_{dfar_i}(\mathbf{x}, \boldsymbol{\omega}) \mid L_{dnear_i}(\mathbf{x}, \boldsymbol{\omega}, \mathbf{p}_i) \mid using ray tracing and the neural radiance field <math>\mathbf{c}_{\{far,near\}_i}$. - \triangleright Evaluate the radiance under indirect illumination $|\mathbf{C}_{pb,ind*_i}|$ and far-field direct illumination $\mathbf{C}_{\mathrm{pb,dfar}_i}$ by Monte Carlo Integration of the rendering equation. - \triangleright Compute radiance under near-field direct illumination $|\mathbf{C}_{pb,dnear_i}|$ efficiently w/o MC integration. - \triangleright Use neural radiance $|\mathbf{C}_{\mathrm{rf},*}|$ as additional signals to better separation and disambiguation. #### : element-wise multiplication / add : trainable operator / MLP #### **Quantitative results** - We test with different variations of input lighting conditions, for each of which VMINer gives comparable or superior results. - > Adding lighting helps in geometry and material estimation. Table 1. Quantitative comparison results with state-of-the-art methods averaged on 6 synthetic scenes. We show results of surface normal, diffuse albedo, view synthesis RGB, free-viewpoint (FV) relit RGB, the specular reflection part of FV relit RGB, and training time on a single RTX 3090 GPU. We mark the **best** and the <u>second best</u> results in each column. $\uparrow(\downarrow)$ means bigger (smaller) is better. | Method | Input lighting conditions | Normal | al Albedo | | View synthesis | | FV relit | | FV relit (spec) | | Time | |---|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------| | | | MAngE↓ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | Time | | (1) TensoIR(2) NVDRMC(3) VMINer | Single far-field | 17.66
16.24
12.39 | 26.48
26.52
24.50 | 0.921
0.915
0.882 | 29.48
27.13
28.20 | 0.912
0.913
0.934 | 28.18
26.61
27.46 | 0.901
0.901
0.921 | 28.30
25.57
27.56 | 0.861
0.836
0.871 | 300 mins
150 mins
45 mins | | (4) WildLight (5) Ours | Single far-field +
Flashlight | 11.49
10.89 | 28.86
31.62 | 0.940
0.953 | 29.87
32.09 | 0.929
0.953 | 30.44
32.00 | 0.930
<u>0.953</u> | 27.71
30.75 | 0.863
<u>0.906</u> | 1440 mins
60 mins | | (6) TensoIR
(7) VMINer | Two far-field | 16.24
11.70 | 27.18
26.07 | 0.929
0.902 | 29.68
29.59 | 0.912
0.942 | 28.66
29.27 | 0.902
0.934 | 28.46
29.09 | 0.863
0.890 | 300 mins
45 mins | | (8) VMINer T | Two far + Single near | 10.79 | 32.04 | 0.957 | 32.10 | 0.950 | 32.38 | 0.954 | 31.40 | 0.910 | 60 mins | #### Real-world results ### **Applications** Relocation & Relighting