

VMINer: Versatile Multi-view Inverse Rendering with Near- and Far-field Light Sources

Jiajun Tang 1,3 Ping Tan ^{2,3} Fan Fei ^{1,3} Boxin Shi¹

² Hong Kong University of Science and Technology ¹ Peking University

Project page:

https://costrice.github.io/vminer

Comparison

Results

Motivation

Make 3D reconstructions relightable

- > 3D reconstruction methods usually represent only the radiance, a product of geometry, material, and lighting, making their results unrelightable.
- > Inverse rendering further separates material and lighting, making the reconstruction relightable.

Leverage varied lighting to disambiguate

Severe Inherent Ambiguity: dark region in the red circle due to geometry, material, or lighting?

Finding: not due to material, or the dark region would sustain

Observation: it disappears under another lighting

- > We propose to make the most out of whatever lighting conditions (both far- and near-field) are at hand to disentangle lighting from the material, resulting in a versatile framework.
- > A higher degree of lighting variation gives better reconstruction results but requires a more burdensome capture process. It is up to you.
- > Use flashlights as handy, effective light sources.

: untrainable operator

➤ Model each far-field lighting as spherical Gaussians with per-lobe axis, amplitude, and sharpness $|\xi_{ij}, \mu_{ij}, \lambda_{ij}|$

: refer to another entry

➤ Model near-field lighting as a point light with position and SH radiation $| \mathbf{p}_i, \mathbf{h}_i |$

: input : variable

- \triangleright Compute the indirect illumination $L_{ind*_i}(\mathbf{x}, \boldsymbol{\omega})$ and the secondary visibility of the direct illumination $L_{dfar_i}(\mathbf{x}, \boldsymbol{\omega}) \mid L_{dnear_i}(\mathbf{x}, \boldsymbol{\omega}, \mathbf{p}_i) \mid using ray tracing and the neural radiance field <math>\mathbf{c}_{\{far,near\}_i}$.
- \triangleright Evaluate the radiance under indirect illumination $|\mathbf{C}_{pb,ind*_i}|$ and far-field direct illumination $\mathbf{C}_{\mathrm{pb,dfar}_i}$ by Monte Carlo Integration of the rendering equation.
- \triangleright Compute radiance under near-field direct illumination $|\mathbf{C}_{pb,dnear_i}|$ efficiently w/o MC integration.
- \triangleright Use neural radiance $|\mathbf{C}_{\mathrm{rf},*}|$ as additional signals to better separation and disambiguation.

: element-wise multiplication / add : trainable operator / MLP

Quantitative results

- We test with different variations of input lighting conditions, for each of which VMINer gives comparable or superior results.
- > Adding lighting helps in geometry and material estimation.

Table 1. Quantitative comparison results with state-of-the-art methods averaged on 6 synthetic scenes. We show results of surface normal, diffuse albedo, view synthesis RGB, free-viewpoint (FV) relit RGB, the specular reflection part of FV relit RGB, and training time on a single RTX 3090 GPU. We mark the **best** and the <u>second best</u> results in each column. $\uparrow(\downarrow)$ means bigger (smaller) is better.

Method	Input lighting conditions	Normal	al Albedo		View synthesis		FV relit		FV relit (spec)		Time
		MAngE↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	Time
(1) TensoIR(2) NVDRMC(3) VMINer	Single far-field	17.66 16.24 12.39	26.48 26.52 24.50	0.921 0.915 0.882	29.48 27.13 28.20	0.912 0.913 0.934	28.18 26.61 27.46	0.901 0.901 0.921	28.30 25.57 27.56	0.861 0.836 0.871	300 mins 150 mins 45 mins
(4) WildLight (5) Ours	Single far-field + Flashlight	11.49 10.89	28.86 31.62	0.940 0.953	29.87 32.09	0.929 0.953	30.44 32.00	0.930 <u>0.953</u>	27.71 30.75	0.863 <u>0.906</u>	1440 mins 60 mins
(6) TensoIR (7) VMINer	Two far-field	16.24 11.70	27.18 26.07	0.929 0.902	29.68 29.59	0.912 0.942	28.66 29.27	0.902 0.934	28.46 29.09	0.863 0.890	300 mins 45 mins
(8) VMINer T	Two far + Single near	10.79	32.04	0.957	32.10	0.950	32.38	0.954	31.40	0.910	60 mins

Real-world results

Applications

Relocation & Relighting

